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Abstract

Diamond hosts a wide variety of colour centres that have demonstrated outstanding optical and
spin properties. Among them, the nitrogen-vacancy (NV) centre is by far the most investigated
owing to its superior characteristics, which promise the development of highly sophisticated
quantum devices, in particular for sensing applications. Nevertheless, harnessing the potential of
these centres mainly relies on the availability of high quality and purity diamond single crystals
that need to be specially designed and engineered for this purpose. Plasma assisted chemical
vapour deposition (CVD) has become a key enabling technology in this field of research.
Nitrogen can indeed be directly doped in situ into a high crystalline quality diamond matrix in a
controlled way, allowing the production of single isolated centres or ensembles that can
potentially be integrated into a device. In this paper we will provide an overview of the
requirements for synthesizing ‘quantum-grade’ diamond films using CVD. These include the
reduction of impurities and surrounding spins that limit coherence times, the control of NV
density in a wide range of concentrations as well as their spatial localization within the
diamond. Enhancing the charge state and preferential orientation of the colour centres is also
discussed. These improvements in material fabrication have contributed to positioning diamond
as one of the most promising solid-state quantum systems and the first industrial applications in
sensing are just starting to emerge.

Keywords: single crystal diamond, quantum technology, NV centres, colour centres, diamond
CVD growth
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1. Introduction

Solid-state quantum systems that possess long-lived spin
and/or optical coherence are likely to play key roles in the
development of a broad range of applications in quantum
technology (QT), from quantum networks to information pro-
cessing and quantum sensing [1]. In this context, various can-
didate systems are being considered, such as superconducting
circuits [2], donors in silicon [3, 4], rare-earth ions in oxide
crystals [5], quantum dots [6] and defects in semiconductors
[7]. Among them, colour centres in diamond are arguably one
of the most promising and studied systems [8]. The grow-
ing interest that surrounds this material essentially stems from
the outstanding optical and spin properties of the nitrogen-
vacancy (NV) colour centre [9], which have opened up a pleth-
ora of potential breakthrough applications in QT, including the
first demonstration of kilometer-scale entanglement between
solid-state spin qubits for quantum networks [10], the realiza-
tion of quantum error correction protocols [11] and the devel-
opment of highly sensitive quantum sensors [12—-14], which
are already close to becoming commercial products [15]. In
addition, the progress achieved in harnessing NV centres’
potential for QT has fostered the emergence of other colour
centres in diamond, particularly those of group 1V, that exhibit
complementary properties such as SiV, GeV, SnV or PbV
[16-20]. At the heart of the success of diamond as a plat-
form for QT are the fundamental science and the technologies
that have allowed the fabrication of specially designed and
engineered ‘quantum grade’ synthetic crystals. Indeed, most
practical demonstrations and advances in diamond-based QT
depend on material development.

Both the high-pressure high-temperature (HPHT) and
chemical vapour deposition (CVD) techniques are currently
used to fabricate diamonds with optimized properties for
industrial and high-tech applications. These synthetic diamond
growth technologies have witnessed tremendous improve-
ments over the past decades leading to ever thicker, larger and
higher-purity crystals [21]. Gem-quality material with fancy
colours or colourless up to several carats in size have been
obtained, which may be seen by some as a threat to the stability
of the natural diamond market established for jewellery [22].
One of the driving forces for innovation, however, has been
the field of electronics in which diamond detectors as well as
power devices are regarded as technologically disrupting with
outstanding figures of merit [23]. Schottky diodes and field
effect transistors are predicted to allow the operation of smal-
ler components that can drive exceptionally high currents and
sustain high voltages in harsh environments [24-26]. While
these devices are still in their infancy, their development has
required improvements in the synthesis of fairly thick diamond
films (several hundreds of micrometres) with a purity down to
the parts per billion (ppb) level and a surface area as large as
possible to facilitate processing and integration [27]. To this
end, electrical doping using boron for p-type [28] and phos-
phorous for n-type [29] crystals has been explored. Nitrogen,
which is a deep passivating donor with an activation energy of
about 1.7 eV [30], generally needs to be avoided. However,
like most wide band gap semiconductors, diamond suffers

from a high activation energy of its dopants, asymmetric dop-
ing of n-type being extremely difficult to achieve on a standard
(100) orientation and requiring non-conventional growth con-
ditions and substrates [31-33]. The enormous progress made
in this area during the last decades has played a crucial role in
unleashing the potential of this material for QTs and has con-
tributed to making diamond material available for this broad
research community. In fact, accurate control over the amount
of residual impurities (such as nitrogen and boron), isotopic
carbon content and crystalline defects that have a deleterious
effect on spin coherence times are key to material adoption in
QTs. While HPHT can produce bulk crystals with high crystal-
line perfection, their purity remains limited and the technique
is usually not flexible enough to allow for precise engineer-
ing of ‘quantum grade’ layers of material, even if, as it will
be discussed in section 3.1, some HPHT diamonds have been
studied and exploited for QT demonstrations. The route that
is thus most widely followed is to homoepitaxially grow a
thin diamond film with optimized properties using CVD on
a HPHT diamond substrate possessing appropriate crystalline
quality and orientation. Although the CVD growth method is
relatively mature, crystalline films that can deliver optimized
performance in QTs are yet not routinely produced.

In this review we discuss some of the achievements and the
remaining challenges that are crucial for the highly demanding
field of diamond-based QT, with a focus on quantum sensing
and imaging applications with NV colour centres. In particu-
lar, we give special emphasis to material fabrication through
the now well-established CVD technique and focus on in sifu
doped material with NV centres for sensing devices. Issues
with other colour centres (SiV, GeV, etc) might be raised but
will not be discussed in great detail.

2. Material requirements for NV-based quantum
sensing applications

In this section, we first identify some key challenges in dia-
mond growth to optimize the performance of quantum sensing
applications based on NV colour centres, starting with a brief
reminder of their main optical and spin properties.

The NV colour centre consists of a substitutional nitrogen
atom (N) combined with a vacancy (V) in a neighboring lattice
site of the diamond crystal (figure 1(a)). This point-like defect
gives rise to localized electronic states with energy levels
deeply buried inside the bandgap of the diamond. As a result,
the NV centre can be considered as an artificial atom, mostly
decoupled from the valence and conduction bands of the host
material. Like many point defects in semiconductors, the NV
colour centre can be found in various charge states having very
different optical and spin properties [9]. Applications in QTs
mostly rely on the negatively charged state (NV ™), for which
an additional electron is provided by a nearby donor impur-
ity, thus leading to a quantum system with two unpaired elec-
trons. The NV~ colour centre exhibits a perfectly photostable
photoluminescence (PL) emission with a zero-phonon line at
1.945 eV (AzpL = 637 nm), and provides a spin triplet ground
level, which can be initialized by optical pumping, coherently
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manipulated with long coherence time through microwave
(MW) excitation and read-out using pure optical means (figure
1(b)) [9]. As explained below, these properties are at the heart
of NV~ based quantum sensing. However, the NV defect can
also be stabilized in a positively charged configuration (NV ™),
which is optically inactive [34, 35], and more often in a neut-
ral form (NV?), which is characterized by a shift of the zero-
phonon line to 2.15 eV (Azp, = 575 nm), and does not feature
the appealing spin properties of its negatively charged coun-
terpart [36-38]. As a result, a first requirement on diamond
crystals for QT applications is to provide an environment pro-
moting the stabilization of the NV~ charge state. In the follow-
ing, we focus on the spin properties of the NV~ configuration,
which will be simply referred to as NV for clarity.

A key feature of the NV colour centre is that its ground
level is a spin triplet state, S = 1, whose degeneracy is lifted
by spin—spin interaction into a singlet state of spin projection
my = 0 and a doublet m; = £1, separated by 2.87 GHz in the
absence of a magnetic field (figure 1(b)). Here m, denotes the
spin projection along the NV defect quantization axis, corres-
ponding to a [111] crystal axis joining the nitrogen and the
vacancy. Radiative transition selection rules associated with
the spin state quantum number lead to an efficient polarization
of the NV defect in the ground state spin level m; = 0 by optical
pumping. Furthermore, the NV defect PL intensity is signific-
antly higher when the m; = 0 state is populated. Such a spin-
dependent PL response enables the detection of electron spin
resonance (ESR) on a single defect by optical means. Indeed,
when a single NV defect, initially prepared in the m; = 0 state
through optical pumping, is driven to the m; = +1 spin state
by applying a resonant MW field, a drop of the PL signal is
observed, as depicted in figure 1(c).

The first demonstration of optically detected ESR on a
single NV defect was reported in 1997, using a natural dia-
mond sample and a confocal optical microscope operating
under ambient conditions [39]. About ten years later, it was
shown that these properties can be exploited for the design
of a new generation of magnetometers [40—43], providing an
unprecedented combination of spatial resolution and magnetic
field sensitivity, even at room temperature. Here the magnetic
field is evaluated within an atomic-sized detection volume by
recording the Zeeman shift of the NV defect’s electron spin
sublevels (figure 1(c)), which is given by A = zg% IBnvl,
where g“T” ~28 GHz T~! and Byy is the magnetic field projec-
tion along the NV defect quantization axis. The sensing func-
tionalities of NV defects were then extended to a large number
of external perturbations including strain [44], electric fields
[45], pressure [46] and temperature [47-49], which all have
a direct impact on the ESR frequency. For all these physical
quantities, the shot-noise limited sensitivity 7, of a single NV
spin sensor scales as [13, 50]

1

I
e /RTS

where C; is the contrast of the optically detected ESR spec-
trum, 775 denotes the inhomogeneous spin dephasing time of

ey

the NV defect which limits the ESR linewidth and R is the
number of detected photons. For a single NV defect, the ESR
contrast is of the order of Cy;~20%, a value fixed by the
intrinsic photophysical properties of the NV defect, which
can hardly be modified. The sensitivity can thus be improved
either by increasing the collection efficiency of the PL signal
[50] or by introducing alternative methods to improve the spin
readout fidelity, such as photoelectric detection [51], spin-to-
charge conversion [52] or infrared absorption readout [53].
From a material science point of view, the only parameter
allowing optimization of the sensitivity is here the spin deph-
asing time T of the NV sensor, which is mainly limited by
magnetic interactions with a bath of paramagnetic impurities
both inside the diamond matrix and on its surface [54]. A key
requirement is therefore to engineer diamond samples with an
extremely low content of impurities, as close as possible to a
perfectly spin-free lattice, in order to reach long spin coher-
ence times. Particular attention must be also paid to the dis-
tance between the NV centres and the surface, since this is
well known to strongly affect both the charge state and the
coherence time of NV centres due to the induced surface elec-
tronic spin bath [55], even if surface treatment and specific
chemical terminations can limits these effects [56-58]. We
note that the sensitivity can also be enhanced for the measure-
ment of time-varying signals. Such AC sensing protocols rely
on dynamical decoupling sequences of the NV spin sensor,
which result in a prolongation of its coherence time to a value
commonly referred to as 7, which can be orders of magnitude
longer than T5 [50].

While a single NV defect provides an ultimate spatial res-
olution for imaging applications, the sensitivity can be simply
improved by increasing the number N of sensing spins. For an
ensemble of NV defects, the shot-noise limited sensitivity 7,
then scales as

1

X .
e e /NRT;

A challenge in material science is thus to increase the
density of NV defects while maintaining good spin coher-
ence properties. However, the gain in sensitivity is partially
compensated by a reduced contrast of spin readout. Indeed,
NV defects are oriented with equal probability along the four
equivalent <111> crystal directions, leading to a decreased
sensitivity because only a quarter of NV spins are efficiently
contributing to the detected signal, the others producing solely
abackground PL. In addition, luminescence from other impur-
ities, such as the neutral NV° defects, further impairs the
signal-to-background ratio. The spin readout contrast then
falls typically to C, =~ 1% for large ensembles of NV defects
[50]. Mitigating this effect requires (i) achieving preferen-
tial orientation of the NV defects during diamond growth and
(ii) improving the conversion of NV defects in the negat-
ively charged state configuration.

In addition to providing the highest sensitivity to date [59],
ensembles of NV defects can also be used for imaging applic-
ations [60, 61]. To this end, a sample of interest is commonly

@
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Figure 1. (a) (Left) optical image of a high-purity diamond crystal grown by CVD. (Right) atomic structure of the NV defect.

(b) Simplified energy level scheme. The NV defect is polarized into the spin sublevel m; = 0 by optical pumping, and exhibits a
spin-dependent PL intensity. (c) Optically detected ESR spectra recorded by monitoring the NV defect PL intensity while sweeping the
frequency of the MW field. When a magnetic field is applied (lower panel), the ESR transitions are shifted owing to the Zeeman effect, thus
providing a quantitative measurement of the magnetic field projection Bxv along the NV defect quantization axis.

deposited directly on top of a diamond crystal, which contains
a thin layer of NV centres near the diamond surface. The spin-
dependent PL signal from the NV layer is imaged onto a CCD
camera in a wide-field detection scheme, with a spatial resolu-
tion limited by diffraction (~500 nm). In the last few years,
this method has found numerous groundbreaking applica-
tions in very different fields of research [12], including NMR
spectroscopy [62, 63], biomagnetism [64], geoscience [65]
and condensed matter physics [66—69]. Further performance
improvements of this technique require the engineering of thin
diamond layers with a high NV density featuring long spin
coherence time and preferential orientation.

To summarize, current challenges in diamond growth to
optimize the performance of NV-based quantum sensing
include:

(a) Tailoring the diamond matrix so that decoherence is as
limited as possible. Although important progress has been
obtained through defect engineering or isotopic purifica-
tion, coherence times are still far from the theoretical 7',
limit. This is particularly true when the spins of interest
are located near the surface or in a diamond crystal with a
high nitrogen content.

(b) Controlling NV density and charge state. Since many sens-
ing applications rely on dense NV ensembles to improve

sensitivity, controlling the ratio between NVs and other
N-containing defects is crucial. In addition, the close
environment of the defect has to favour the occurrence of
the negative charge state with respect to the neutral one.

(c) Spatially localizing NV centres. The precise positioning of
single or ensembles of NV centres both at-depth and in-
plane is of importance for incorporating them into cavities
or nanostructures, or for improving the performances of
wide-field imaging with NV ensembles.

(d) Controlling NV orientation. Promoting a preferential ori-
entation is desirable to limit the background noise level,
increase sensitivity and simplify device operation.

These different aspects ofmaterial fabrication will be dis-
cussed hereafter.

3. The synthesis of ‘quantum grade’ diamond films
and crystals

3.1. HPHT grown diamonds

HPHT is well established for producing bulk single crystals
up to a few millimetres thick and a millimetre square in size
that are available commercially, in particular for cutting tool
applications. This technique typically uses a bath of melted
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transition metals (such as Co, Fe, Ni, Cr, Mn, etc) in which
carbon (in general diamond powder or graphite) is dissolved
and re-precipitated on the facet of a small seed in a region
of slightly lower temperature (20 °C-50 °C lower) [70]. This
temperature gradient approach involves pressures and temper-
atures above 5 GPa and 1300 °C, respectively. Different heavy
set-ups exist that differ in the way the pressure is applied
to the cell, such as uniaxial compression with belt and tor-
oid systems, or multi-anvil systems (so-called bars and cubic
presses) [71]. This equipment is mostly operated by indus-
trial players (Element Six, General Electric, Sumitomo, New
Diamond Technology, etc) and essentially poduces mater-
ial destined for mechanical applications in which require-
ments for purity and quality are moderate. Under adapted and
stable conditions, however, large crystals can be produced
with potentially extremely low extended defect content. For
example, inclusion-free single sector diamonds with stack-
ing faults and dislocation content below a few hundred per
cm? have been demonstrated [72, 73]. However the precise
recipes developed to reach this degree of perfection are usu-
ally well-kept industrial secrets, while the associated costs can
be tremendously high (up to several thousands of euros for a
500 pm thin slab). In contrast, standard HPHT crystals typic-
ally contain dislocation densities of the order of 10*~10° cm—?
and visible growth sectoring [74], but their cost is limited to
a few hundreds of euros depending on size, orientation and
polishing.

Although bulk crystals with low dislocation density can
be grown by HPHT, the technique is not well adapted to
produce films with a high purity or a controlled doping as
required by quantum applications. Indeed, the high pressures
and high temperatures required in this process make the con-
trol of possible contamination coming from impurities trapped
in porosity extremely difficult. Standard HPHT diamonds are
usually labelled as type Ib due to the presence of a large
amount of non-intentionally doped nitrogen in them (typically
10-300 ppm) that leads to a yellowish colouration and obvi-
ous growth sectoring (see figure 2(a)) [75]. Nitrogen uptake
depends on the solvent-catalyst used and its solubility in them.
While quantum sensing requires incorporation of NV centres,
it should be emphasized that the nitrogen content in HPHT
crystals is not necessarily in the form needed for an optim-
ized sensor. A significant fraction of the N is, for example,
present as substitutional (Ng), known as a P1 centre. Aggreg-
ated forms also exist due to nitrogen mobility being activated
under high pressures and temperatures. The N-V-N or H3
centre is for example frequently created and leads to emis-
sion at 503 nm in the PL. Other aggregated forms are less
prevalent but still commonly found, such as like A centres
(two neighbouring Nj) or B centres (N4V) [75]. Their con-
centration can be of the order of several ppm, depending on
the growth conditions or treatment that they have undergone.
The addition of getters (Ti, Zr, Al, etc) can reduce the amount
of incorporated nitrogen by preferentially associating and pre-
cipitating it as a nitride, allowing fabrication of type Ila col-
ourless diamond crystals by HPHT (see figure 2(b)) [76]. This
material leads to lower background PL and narrower diamond
Raman peaks, as illustrated in figure 2(c). However, in general

N content cannot be suppressed completely and remains of the
order of 0.1 ppm. Growth rates under such low nitrogen con-
ditions are also strongly reduced which increases the overall
cost of HPHT diamonds [73].

Other impurities may also be incorporated in significant
amounts, including solvents from melted baths (Ni and Co)
or element contaminations (B, Si, Ge) which can lead to
the appearance of specific defects or colouring [77]. Around
50 ppm of boron has been measured in some of the purest
type Ila diamonds [78]. Boron is known to stabilize the neut-
ral charge state of NV centres and is usually not desirable
(see section 4.4). Impurity incorporation dependence on crys-
tal orientation is also an important issue that is associated with
variations in colouring and/or luminescence under UV light
(figure 2(a)). The incorporation efficiency in (111) growth sec-
tors is usually 2—3 times higher than in (100) and (110) sectors
[79]. Isotopic purification of HPHT diamonds to change the
12C/13C ratio has been achieved using pyrolytic carbon powder
[80], but remains relatively difficult and uncommon due to the
high cost of the precursors and the low flexibility of the tech-
nique. While residual impurities are difficult to avoid with this
synthesis process, intentional additions of certain metals to the
bath/catalyst mixture can be explored to create specific col-
our centres. For example, SiV, GeV or SnV centres, which are
also interesting systems for QT, have been obtained [81, 82].
This is an important advantage of the HPHT approach because
such elements cannot always be easily brought in through the
vapour phase or incorporated using the CVD production tech-
nique due to their limited solubility.

The ability to control crystal morphologies through tuning
of the growth temperature and the solvent has been highlighted
and opens the way to obtaining various crystal types from
cubic to octahedral. Control of the morphology opens the way
to the fabrication of larger plates with specific orientations that
can be extracted from such stones [83]. In particular [111]-
oriented diamonds can be cleaved from octahedral shaped
crystals and are particularly suited as substrates for CVD over-
growth with oriented NV centres (as will be discussed in sec-
tion 6) [84]. Bulk crystals can thus be obtained through the
HPHT technique with a high crystalline perfection but limited
purity. Nevertheless NV ensembles in type IJbPHPHT diamonds
have been studied and exploited for QT demonstrations. Some
examples include magnetometry [59], MW photon storage
[85], coupling to superconducting resonators [86], quantum
memories [87], hyperpolarisation of '*C [88] and data stor-
age [89]. Although one can benefit from a bulk material that
is easily available, the nitrogen density in the form of sub-
stitutional defects is usually a limiting factor and reduces the
coherence times (72) to typically only 1-2 ps at room temper-
ature [90]. Nevertheless, by reducing the spin bath surround-
ing NV centres through isotopic purification and limited nitro-
gen doping, as well as irradiating the crystal to convert Ny
into NV, T, can be extended to several tens of microseconds
[85]. In general, electron irradiation followed by annealing
has become a rather standard treatment to improve the per-
formance of such HPHT crystals (see section 4.1). Although
some attempts have been made to explore bulk HPHT dia-
mond crystals in the field of quantum sensing, this material
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Figure 2. (a) Optical and PL images of a type/b HPHT substrate. (b) Optical and PL images of a type IIa HPHT substrate. (c) Raman/PL
spectra of type Ib and ITa HPHT substrates obtained with an excitation line at 473 nm. The inset shows the linewidth of the diamond Raman
peak. The type Ila diamond was provided by New Diamond Technology (NDT).

in general fails to provide the purity and the flexibility of fab-
rication that is required for highly efficient devices. The most
common approach thus relies on using HPHT crystals as the
starting substrates onto which films with the desired properties
are overgrown by CVD.

3.2. CVD grown diamonds

MW plasma assisted CVD has become a key technology,
showing great potential to produce engineered films with the
desired doping, isotopic purity and dimensions. The use of
CVD-grown diamond films and crystals is relatively wide-
spread in QT, although their availability remains limited.
Unlike the HPHT technique, the CVD technique mostly
involves academic research groups, while the commercial
availability of high purity plates is limited to a few indus-
trial companies only (Element Six, Diamond Materials, Ila
Technologies, etc). A large market for CVD diamond plates is
yet to be found. The fabrication of high-quality thick crystals
is also technologically challenging with difficult scaling-up,
which contributes to an increase of the fabrication costs. Cur-
rently, HPHT still remains dominant when it comes to produ-
cing bulk synthetic diamonds, while CVD is mostly focused
on producing thinner layers. Although the size and thickness
of the produced crystals is not such a limiting factor for QT,
diamonds may need to be thick enough to be processed and
properly oriented or separated from their substrate.

The CVD technique operates at pressures lower than atmo-
spheric pressures (10-300 mbar), under conditions at which
graphite should be in the thermodynamically stable phase
[91-93]. It involves kinetically stabilizing diamond through
the production of atomic hydrogen within a high temperature
plasma medium that preferentially etches away weak sp’
bonds, allowing the addition of carbon to the diamond lattice

of the substrate. H, and CHy are used in a typical proportion
of 95%-99% to 5%—1%, respectively. Addition of O, in small
amounts (<2%) is sometimes used in order to increase the etch-
ing effect and limit impurity incorporation or non-epitaxial
defect formation [94, 95]. In general, activation of the gas is
performed through applying a 2.45 GHz MW field to a res-
onant cavity reactor (figure 3(a)) [96, 97]. Operation under
higher pressures (>100 mbar) and MW powers (>2 kW) leads
to the formation of a localized plasma region in the core of
which temperatures may reach up to 3000 K, which is favour-
able to produce precursors for growth [98]. Indeed, thermal
dissociation of the molecules into a variety of atomic and rad-
ical species is highly pronounced and may be of up to sev-
eral tens of percent [99]. Growth is carried out at a temperat-
ure in the range 700 °C-1100°C on a diamond seed through
either cooling or heating the substrate holder, depending on
the power density applied. Several providers have commer-
cialized MW plasma assisted systems with varying character-
istics (Cornes Technologies (Seki Systems), Plassys, IPLAS,
Optosystems, etc), and a large number of research groups have
developed their own equipment. The main differences in those
systems are essentially in the way the MW radiation is coupled
to the resonant cavity (electromagnetic modes), the location of
dielectric windows and the design of the holder (translatable,
rotatable, cooled or heated). High-power operating reactors
are preferred for achieving high growth rates and low defect
bulk diamond crystals. However, the low-power regime may
be advantageous for ensuring nanometre-scale control over the
thickness of the layers and a precise positioning of dopants or
colour centres (see section 5.1).

With a hetero-substrate such as a silicon wafer, a
polycrystalline film in which grain size directly depends
on thickness through a columnar growth mode is gener-
ally obtained. Under certain growth conditions, films may
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exhibit a particular texture or preferential orientation [100].
The presence of grain boundaries is, however, deleterious to
obtaining long coherence times and low background lumin-
escence. Polycrystalline diamonds are usually not preferred
for sensing applications. Interesting properties for single NVs
have, however, been found locally within the larger grains of
polycrystalline films [44, 101]. They also offer the advantage
of providing a large and flexible platform for processing them
into photonic crystals and resonators that would be highly
desirable for QTs [102].

Heteroepitaxial growth on specially developed templates,
that include a thin monocrystalline iridium layer deposited
on an oxide thin film on silicon or a bulk crystal (yttria
stabilized ZrO,, a-plane Al,O3 or SrTiO3), is another pos-
sible approach that promises wafer-scale deposition areas
[103-105]. In recent years, some important efforts in mater-
ials development have been devoted to obtaining higher qual-
ity and larger films, with new venture companies starting to
commercialize them (Audiatech, Namiki, etc). The complex
steps that lead to oriented diamond growth include deposition
of the epitaxial Ir films on an appropriate substrate, the biased
enhanced nucleation of diamond domains on them, thickening
of the film and limitation of dislocation density through pat-
terning of the surface [106]. In general dislocation densities
still remain high even in thick films (>107 cm~2) [107] and
impurities such as silicon are difficult to avoid. Nevertheless
a recent assessment of state-of-the-art films produced through
this approach have demonstrated 7', coherence times of 5 ys,
supporting the idea that they may provide a useful larger plat-
form for future applications in QTs, providing that the material
quality and availability are improved [108].

Homoepitaxial growth onto a diamond seed (generally a
type Ib HPHT substrate) is the preferred fabrication route for
obtaining high quality and purity diamond films that are suit-
able for QTs (figures 3(b) and (c)). Although CVD is relatively
simple in its operating principle, obtaining layers with a given
defect concentration and the desired thickness has motivated a
large number of research activities through the past few dec-
ades, in particular within the earlier and demanding context of
power electronics. Substrate selection and preparation play an
important role in the epitaxial overgrowth, and adapted polish-
ing or etching of the surface prior to growth helps to limit the
propagation of defects from the interface [109]. Maintaining
constant growth conditions, in particular temperature, during
long periods of time is also a limiting factor when thicker lay-
ers are desired. The development of specific substrate hold-
ers that include cooling with gas mixtures or vertical transla-
tion may be needed [110-112]. The presence of uncontrolled
amounts of N, or O, from reactor leaks or impure feed gases
has important consequences and can induce the formation
of polycrystalline defects that would quickly ruin the entire
growth run [91, 98, 113, 114]. To this end, care must be taken
to frequently check for potential leakage sources and to use
dedicated purifying systems, particularly for hydrogen. When
good control of the gas environment is successfully achieved,

single crystal diamond plates with good purity or intentionally
doped with a controlled nitrogen amount can be prepared (see
figures 3(d) and (e)). Other potential contamination sources
may be released by the constitutive materials of the react-
ors themselves (metal walls, quartz windows, molybdenum
holders, etc) such as boron, silicon or nitrogen. In addition
to choosing adapted materials for the reactor furniture, the
design should ensure that the internal parts are appropriately
cooled down or positioned far away from the high temperature
plasma medium. The appearance of SiV emission in CVD dia-
monds is nevertheless very common and is even used as a cri-
terion for establishing a diamond’s synthetic origin in gemmo-
logy [115]. Finally it should be noted that hydrogen, one of the
main elements involved in the growth process, is usually over-
looked although it is one of the main impurities in CVD-grown
crystals. Hydrogen-vacancy defects known as H1 centres are
paramagnetic and show up in electron paramagnetic resonance
(EPR) together with the nitrogen-vacancy-hydrogen (NVH)
for example [116, 117].

The ability to prepare isotopically enriched layers is also a
particularly useful asset of CVD grown diamond films. Indeed,
growth from methane using a natural isotopic carbon ratio
leads to the presence of 1.1% of '3C in the films, which is
a non-zero nuclear spin element. Coupling of the NV spins
to nearby '3C atoms is the main source of decoherence for
films with a low amount of NVs (<0.1 ppm) far away from
the surface [54, 118]. Reducing the amount of 13C is relat-
ively straightforward by substituting the conventional methane
source with an enriched '>C methane cylinder. By doing so, T
times have been successfully extended from a typical value of
0.5 ms up to a record of 2.4 ms [119]. Nevertheless, the cost
of such sources is several orders of magnitude higher than that
of a standard methane cylinder. Moreover the specifications
in terms of N, or CO, background content are usually much
higher than high-purity grade methane and may require addi-
tional purification steps with dedicated purifier cartridges. On
the other hand, intentional addition of '*C in CVD-grown films
can be achieved to deviate from the natural isotopic ratio. Par-
ticular schemes have been proposed that explore coupling of a
NV spin to a nearby long-lived nuclear spin to further extend
quantum storage times [120]. Dynamic nuclear polarization
may also be useful in magnetic resonance spectroscopy and
imaging applications [121].

In general, one of the main advantages of the CVD growth
approach for making ‘quantum grade’ diamonds is the abil-
ity to engineer stacked layers with different doping and com-
position in a dynamic and very flexible way. Indeed the gas
phase environment can be controlled to an extremely high
level, while changing from one composition to another can
be done with abrupt interfaces, providing that the residence
times of gas species are taken into account (see section 5.1).
CVD diamond fabrication of specially designed bulk crys-
tals or thin films has thus become a cornerstone of the devel-
opments that the QTs based on this material system have
witnessed.
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Figure 3. (a) An MW plasma assisted CVD system allowing the growth of diamond. The inset shows a zoom into the plasma region in
which a diamond is positioned for growth. (b) A high purity thick CVD diamond layer grown on a yellow HPHT diamond substrate and

(c) freestanding CVD diamond film obtained after removing the HPHT substrate by laser cutting and polishing. (d) PL image of a high purity
thick freestanding CVD diamond film showing only very weak blue luminescence in the corners corresponding to the presence of stress.

(e) PL image of a N, doped thick freestanding CVD diamond film showing orange luminescence corresponding to the presence of both NV°

and NV~ colour centres.

4. Creating colour centres with good coherence
properties

4.1. Implanting colour centres in high purity CVD diamonds

While the CVD technique allows the fabrication of
isotopically enriched diamond films with extreme purity,
a varying amount of colour centres need to be incorpor-
ated within this matrix to provide the sensing functional-
ity. A widely followed approach consists of locally implant-
ing nitrogen ions (NT) or a molecule containing nitrogen
(No*, CN™, etc) in ‘electronic grade’ (i.e. high-purity and
non-luminescent) CVD diamonds. In general three steps are
required: (i) introducing impurities, (ii) creating vacancies
(that may be co-implanted together with the impurity or after-
wards) and (iii) annealing to heal defects and diffuse vacan-
cies so that a complex defect can be formed. The present paper
does not intend to give a detailed review of the optimization of
implanted colour centres in diamond and readers are advised
to refer to the following articles [122, 123], however some of
the main trends are presented below.

Regarding the first step, the ions to be implanted can be
accelerated in a wide range of energies, typically from 2 keV
to 20 MeV, leading to implantation depths of 3 nm to about
5 pm, respectively. This obviously requires rather different
implantation set-ups, from small table-top sources for low
energies to large tandem accelerators to reach the MeV regime.
It allows creating specific luminescent patterns within the dia-
mond substrate, as illustrated in figure 4(a). It should be noted
that the ion energy not only influences the penetration depth of
the ions but also the creation yield of NV centres with respect

to each N atom entering the diamond lattice [124]. In fact, the
higher the energy, the higher the number of vacancies that are
co-created, leading to higher yields. Typically, values range
from 0.1% at 2 keV up to about 45% at 18 MeV. However at
high acceleration energies, spatially positioning the implanted
ions with accuracy becomes difficult due to the statistical dis-
tribution of collisions with atoms in the lattice that leads to a
lateral and depth spread called straggling. Obtaining a spatial
accuracy of less than 5 nm, for example, requires that ions are
accelerated to an energy below 10 keV, which limits penetra-
tion to 10 nm only (i.e. to near-surface NV centres). This shows
that a trade-off exists between high-yield high-depth NVs and
low-yield low-depth but highly localized NVs, depending on
the energy of the incoming ions [125]. To go beyond those lim-
its, strategies have been developed to increase the positioning
accuracy by implantation through a pierced AFM tip [126],
mica channels or opened PMMA masks [127].

An additional advantage of the implantation technique
relies on its ability to generate defects from elements that can-
not be easily grown-in directly by CVD due to too high steric
hindrance, low stability or difficulty in bringing them through
the gas phase. In addition, co-implantation with other ele-
ments brings additional flexibility in the generation of complex
defects. Liihmann et al, for example, studied a wide variety of
colour centres that can be created through implantation of ele-
ments as varied as Mg, Ca, F, O, etc, in a matrix that already
contains other implanted impurities of phosphorous or boron
[128]. This obviously leads to an exhaustive variety of com-
binations and adds additional complexity to this approach in
determining the most relevant colour centre for a given applic-
ation. Control of the charge state of created vacancies has been
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Figure 4. PL image of a high purity freestanding CVD diamond film after localized nitrogen ion implantation which leads to the
appearance of orange/red spots corresponding to NV® and NV~ colour centres (collaboration with the University of Leipzig). (b) Evolution
of vacancies/ion number and GR1 fluorescence as a function of implanted ion mass. (c) Evolution of the fluorescence of defects created by
implantation as a function of annealing temperature. (b), (c) Adapted from [128]. © IOP Publishing Ltd. All rights reserved.

accomplished by implanting nitrogen into n-type doped dia-
mond rather than in a standard intrinsic crystal. In this way,
the negative charge state of the vacancies is promoted which
reduces their clustering and thus increases the probability that
they associate to a single nitrogen atom to form an NV centre.
Record creation yields of about 75% have been reported in
sulphur doped diamonds [129].

Introducing additional vacancies into the diamond crystal
can also be explored in order to boost the NV/Ns ratio (cre-
ation yield). Such irradiations are accompanied by the cre-
ation of the GR1 luminescent defect (neutral vacancies) for
which intensity depends on the dose, the energy and the type
of ions that are used (figure 4(b)). Helium ions accelerated to
a few kilo-electronvolts provide, for example, a way to loc-
ally create vacancies at a controlled depth of a few tens of
nanometres and thus the ability to generate so called delta-
profiles [130]. He™ ion beams can also be focused down to a
small size to create patterns [131]. However, evidence exist of
the creation of specific colour centres related to the implant-
ation of helium atoms within the lattice. The optical prop-
erties of such helium-vacancy (He-V) centres have recently
been studied [132]. Other irradiations using protons or elec-
trons present the advantage of having a lower mass com-
pared to helium. Their stopping range is much longer which
allows for a more uniform creation of vacancies through the
volume of the sample. Electron irradiation at several mega-
electronvolts and doses of the order of 10'7-10'" cm~2 has
become a standard treatment for Ib HPHT diamonds in order to
increase the NV density [133]. Local irradiation at lower ener-
gies (around 200 keV) has also proved successful using the
electron beam of a transmission electron microscope (TEM)
[134]. At this energy the penetration depth can be estimated
to be about 140 pum. Vacancy creation efficiency is also more
limited with a minimum energy for vacancy creation of about
145 keV. Nevertheless this technique provides a way to gen-
erate local NV patterns [135, 136]. An alternative approach

is the creation of vacancies through ultrafast (femtosecond)
laser irradiation pulses. Single NV centres can thus be writ-
ten locally into arrays with a positioning accuracy of about
200 nm and coherence times of several hundreds of micro-
seconds, equivalent to naturally occurring NVs [137, 138].

Annealing ion implanted diamonds is a key ingredient to
increase the NV density and improve their coherence proper-
ties. This step allows vacancies to diffuse and defects to heal
so that highly coherent NV centres are formed successfully
following irradiation. Since vacancies in diamond are mobile
above 700 °C, typical annealing temperatures after irradiation
are in the range 800 °C-1000 °C, with the treatment carried
out for a few hours (1-10 h). This is illustrated in figure 4(c),
where the number of NVs is seen to increase with temper-
ature together with a decrease of GR1. Annealing simultan-
eously when carrying out the ion implantation provides a way
to reduce collateral damage and preferentially associate the
vacancies with a nearby N rather than forming clusters [139].
Annealing at too high a temperature (>1200 °C) is likely to
lead to the formation of vacancy clusters or to the thermal dis-
sociation of NVs which should be avoided. Nitrogen atoms can
also become mobile at temperatures of the order of 1600 °C
possibly forming complex clusters such as H3 (N-V-N) as
shown in figure 4(c). In general, the T, times of implanted and
annealed NVs remain below those the NVs originally present
in the diamond by one to two orders of magnitude (typic-
ally 1-10 ps) due to the presence of other defects and resid-
ual damage that cannot be completely annealed out. Optim-
ized annealing treatments at higher temperatures [140, 141]
or composed of successive steps with various annealing tem-
peratures and durations have been proposed to obtain NV
coherence times close to those of native NVs [142]. Never-
theless, there probably does not exist a universally efficient
annealing step, as the optimized procedure strongly depends
on the initial quality of the diamond as well as the starting NV
density.
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4.2. In situ doping of colour centres

While the ex situ creation of colour centres is a flexible
approach with accurate positioning ability, it generally does
not allow obtaining defects with as good coherent properties as
naturally occurring ones from in situ doping. Intentional dop-
ing during CVD growth can indeed be achieved by injecting
a precursor gas containing the element to be doped into the
plasma . N is the most widely used dopant for NV doping.
This molecule has a very strong bond energy (9.8 eV) which
requires high plasma power densities to efficiently dissociate
it. Nitrogen doping into the tight diamond lattice is also not
energetically favourable. Both these issues lead to low doping
efficiencies of about 107 to 1073 [143, 144]. When low plasma
power densities are used (<1 kW MW power), several % of N,
are usually required to reach N concentrations of the order of
0.1 ppm [145, 146].

An additional limitation is that only a small fraction of the
total nitrogen will be incorporated as a complex associated to
a vacancy, with the main part being substitutional to a single
carbon atom (Nj). A typical yield (NV/Niqa) for untreated as-
grown CVD diamonds is of the order of 1/300 or below [147].
Therefore it should be highlighted that the creation yield for
in situ doping is similar to that obtained for nitrogen implanted
at medium energies. This is a particularly limiting factor since
not only will the amount of NV centres to be used for sensing
be limited, but the large proportion of nitrogen, a paramagnetic
impurity, will induce decoherenc, particularly for the highest
doping levels [118]. In addition, a small part of the total nitro-
gen in the CVD-grown diamond, more or less the same propor-
tion as that of NVs, may occur in the form of the NVH com-
plex [148]. These defects are fairly common in CVD diamonds
grown under high nitrogen additions since hydrogen is one of
the main ingredients for CVD growth. They can be detected
in their negative form as a line in EPR and are also visible as
a sharp absorption at 3123 cm~! in Fourier transform infrared
spectroscopy (FTIR) in their neutral charge state [149, 150]
(figure 6(c)). While hydrogen impurities are likely to passiv-
ate part of the NV centres and produce additional magnetic
noise, these complexes cannot be easily annealed out even at
very high temperatures. It would be desirable to improve the
NV yield by changing the growth conditions such as substrate
orientation, pressure, MW power and gas phase composition
(methane, hydrogen, nitrogen and oxygen). However, no sys-
tematic study exists so far on the influence of growth condi-
tions on the NV creation yield, most likely due to the difficulty
in accurately measuring the concentration of those defects in
thin diamond films.

While N, is the most frequently used dopant, other
molecules have been shown to lead to improved NV doping
efficiency and photostability. For example, N,O, which has
a much lower dissociation energy, is also available as a high-
purity gas. While high-density NV ensembles (around 10 ppb)
created through the addition of N, are subject to blinking and
charge state instability, particularly under high laser pumping
power (figures 5(a)—(c)), those formed from N,O are much
more stable (figures 5(d)—(f)) [151]. This is possibly related
to the presence of a low amount of oxygen near the growing

surface due to N, O dissociation in the plasma that etches away
any defects that act as traps for charge carriers [152]. How-
ever, the use of other dopant sources is not very widespread
and would require more dedicated studies.

In addition to N'Vs, other colour centres can be introduced
in situ in CVD-grown diamonds. However, compared to the
HPHT process or to ex situ implantation, the introduction of
a wide variety of impurities is relatively limited. SiV and
GeV centres have been obtained through the addition of a
varying amount of silane or germane gases (SiHy and GeHy)
[153, 154]. For those elements, however, doping using a solid-
state source (such as a small piece of Si or SiC placed near the
growing diamond) is usually the preferred approach due to its
simplicity and non-toxicity [155, 156]. Dopants that modify
the Fermi level of the semi-conducting diamond crystal, such
as phosphorous (n-type) or boron (p-type), can also be advant-
ageously used to tune the charge state of the colour centres (see
section 4.4). This is generally achieved through additions of
tri-butyl phosphine (TBP), tri-methyl boron (TMB) or B,Hg
(diborane) [157]. Although it is not directly involved in the
creation of specific colour centres, the addition of O, dur-
ing growth is also sometimes explored to improve the crys-
talline quality of the films and thereby potentially improving
the coherent properties of in sifu doped NV centres [158].

4.3. Controlling colour centre density

Though in-situ doping, NVs can be created with a wide range
of doping levels from isolated single centres to ensembles
of several tens of ppb without any post-treatment simply
by tuning the added gas concentration during growth. For
some nanoscale sensing applications, or for quantum memor-
ies [159], the manipulation of single NVs with long coher-
ence times is required. Extremely low amounts of NVs (or
even more, no NV at all) are, however, particularly difficult
to achieve and require carefully purified gas sources and leak-
tight reactor chambers. While high-purity ‘electronic grade’
commercial diamonds (specified as Ny < 5 ppb) do not nor-
mally display luminescence originating from NVs, it has been
shown that after annealing at high temperature (1600 °C for
4 h), vacancies diffuse and are able to associate to nitrogen
[128]. This leads toup to 1 NV pum~2 and indicates that even
carefully prepared CVD diamond films may still contain a
low but non-negligible residual background of nitrogen. The
creation of isolated NVs (0.1-1 ppb) relies on low additions
of N, during growth, in general diluted in hydrogen (around
0.1-10 ppm), and thus requires a precise control of the gas
phase composition to achieve the desired concentration [143].
Doping efficiency also strongly depends on growth parameters
such as power density, temperature and substrate orientation
and can thus vary on different set-ups.

On the other hand, high density NV ensembles are desirable
for many quantum sensing schemes [160] since the sensitivity
of a given sensor will depend on the square root of the number
of sensing spins [13] (see section 2, equation (2)). However,
obtaining very high N'V concentrations (>100 ppb) is problem-
atic through direct CVD growth, since large additions of Ny,
typically above 250 ppm under high power density conditions,
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Figure 5. (a), (b) PL images of a CVD diamond film grown with 100 ppm of N> in the gas phase obtained with a confocal scanning
microscope (laser, 532 nm), allowing estimation of the NV~ density as 10 ppb and showing the poor photostability under high laser power.
(c) Optically detected magnetic resonance (ODMR) spectra obtained under a magnetic field of 3 mT and where the characteristic hyperfine
splitting is observed with a FWHM of 0.58 MHz. (d), (e) PL images on a CVD diamond sample grown with 500 ppm of N,O in the gas
phase allowing estimation of the NV~ density as 15 ppb and showing improved photostability even under high laser power. (f) ODMR
spectra obtained under a magnetic field of 3 mT showing a similar hyperfine splitting of 0.9 MHz.

is accompanied by a degradation of the surface morphology
[161, particularly at the edges of the crystal [162], even lead-
ing to a total loss of epitaxy for the highest levels, further lead-
ing to the appearance of twins and polycrystalline material.
Nitrogen solubility is also limited in CVD and cannot allow as
high levels to be reached as those typically achievedin type Ib
HPHT diamonds (a few tens or hundreds of ppm). Under mod-
erate nitrogen doping levels, however, CVD diamonds often
exhibit a brown colour indicative of the presence of vacancy
clusters or dislocations, as shown in figure 6(a) [163]. This
is due to large absorption features at 510, 360 and 270 nm,
the latter being directly correlated with N (figure 6(d)). Very
high brightness diamond films can be obtained by such dop-
ing (figure 6(b)). For thick crystals, Ny concentration can be
directly evaluated from the intensity of the 1344 cm™~! feature
in FTIR, as shown in figure 6(c) [164]. It has been proposed
that the addition of a low amount of oxygen during growth
together with nitrogen helps to limit the formation of such
defects and the appearance of the brown colour [95]. Highly
N-doped CVD diamonds nevertheless contain a large amount
of residual defects that strongly reduce their optical proper-
ties. HPHT or low-pressure high-temperature post-treatments
(>1500 °C) are often required to improve their colour due to a
partial rearrangement or annihilation of point defects [165].
In addition to the difficulty in growing CVD crystals in the
presence of a high concentration of nitrogen in the gas phase,
an additional issue comes from the fact that NVs represent
only a small fraction of the total incorporated N content (see
section 4.2). The contribution of the '*N nuclear spin bath on
NV spin’s dephasing starts to overcome that of natural isotopic
13C for concentrations above 0.1 ppm. At 10 ppm total nitro-
gen, T, times drop to about 10 us [50]. Therefore this leads
to a trade-off between high NV density and long coherence

times. In order to circumvent this, partial conversion of Nj
into NVs can be obtained through an appropriate irradiation
using high energy electrons [59] or He™ ions (see section 4.1).
Using the latter, Kleinsasser et al [166] achieved NV~ dens-
ities of the order of 1 ppm, which is only ten-fold lower than
the highest densities reported in irradiated Ib HPHT diamonds
[167], while ESR linewidths remained narrow (200 kHz). N
to NV conversion rates of the order of 10%—20% are possible
through an appropriate irradiation [168]. In this case dipolar
interactions between proximal NV centres might dominate the
dephasing rather than NV to N coupling.

4.4. Controlling NV charge states

The NV centre possesses neutral and negative charge states
with zero phonon line emissions at 575 and 637 nm, respect-
ively (see section 2). Both are usually present in nitrogen-
doped single crystal diamonds. Quantum sensors exploit the
optical properties of the negatively charged NV centres (spin
S = 1) and therefore the neutrally charged centres with spin
S = 1/2 are undesirable. They may lead to overlapping of the
PL emission due to broad phonon side bands as well as mag-
netic noise that degrades spin coherence times. It is generally
acknowledged that NV centres acquire their negative charge
from nearby electron donors. One obvious candidate for this
charge transfer is the substitutional nitrogen that represents a
large fraction of the total nitrogen content in non-irradiated
nitrogen-doped HPHT and CVD diamonds [149]. For this
reason, under a low power excitation in the range 450-610 nm
to limit photo-ionization, the steady-state NV~ centre popu-
lation is typically about 75% of the total NV amount [169].
However, this value can vary depending on the nitrogen dop-
ing level in the diamond crystal. Type Ib HPHT diamonds with
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Figure 6. (a) Optical images of thick freestanding CVD diamond samples grown with 20 ppm, 40 ppm and 100 ppm of N in the gas phase
from left to right, ranging from colourless to dark brown. (b) Corresponding Raman and PL spectra performed on these samples showing
high emission from NV° and NV~ luminescence at 575 nm and 637 nm, respectively. (c) An FTIR spectrum carried out on a thick
freestanding CVD diamond sample grown with 500 ppm of N>O in the gas phase, allowing Ns°, Ns* and NVH? defects to be clearly
identified and quantified. (d) UV-visible absorption spectrum of a high purity CVD diamond plate and a CVD diamond plate grown with
500 ppm of N>O in the gas phase. Absorption at 270 nm is due to Ns while other broad absorption bands are related to vacancy clusters.

high nitrogen content (several tens of ppm) may have a higher
proportion of NV~ [170, 171]. For example, in the PL spec-
tra of figure 7(a) with an excitation at 532 nm, NV? emission
is almost undetectable compared to that from NV~ due to the
large amount of nitrogen (circa 100 ppm) in this electron irra-
diated type Ib crystal. In contrast, when too high a proportion
of N; are converted to NVs by irradiation, there may not be a
sufficient amount of donors close enough to NVs to provide
the necessary electron. In this case, emission from NV~ tends
to saturate while that from NV? increases, which occurs above
a certain irradiation dose [172].

Promoting N'Vs’ negative charge state can also be achieved
with shallower electron donors than nitrogen, such as phos-
phorous or sulphur [129, 173]. Boron, which is an acceptor
impurity, produces an opposite effect by favouring the neut-
ral charge state. Groot-Berning et al clearly showed the effect
of co-doping in implanted diamond films [174], as illustrated
in figure 7(b). Fermi level tuning can also be achieved with
in situ doped CVD diamond films [175], allowing fine con-
trol over NVs’ charge state. Intentional doping of diamond
by phosphorous during CVD growth is, however, particularly
challenging due to the low doping efficiency of this element

into the diamond while n-type conductivity is limited by com-
pensating defects and high activation energy (0.6 eV) [176].
Nevertheless, electrical control over NVs’ charge state (and
emission) has been shown with p—i—n junctions and switch-
ing from NV~ to NV has been obtained by applying a strong
bias [177].

Regarding shallow NVs, their charge state also strongly
depends on the chemical species present at the diamond’s
surface (typically hydrogen or oxygen termination; see fig-
ures 7(b) and (c)). Since hydrogen termination of diamond
films induces a 2D hole gas through a surface transfer dop-
ing mechanism [178], this termination is not favourable for
negatively charged N'Vs. In contrast, oxidative etching of the
diamond by heating at temperatures around 450 °C in an O,
atmosphere leaves the surface oxygen-terminated and pro-
motes NV~ [179]. Active tuning of the band bending and
thus of the NVs’ charge state, through an electrolytic gate
electrode [36] or using a Schottky metal contact [180] have
been demonstrated, leading to on-demand switching of the
PL emission. In general, it should be noted that O-terminated
diamond surfaces, which are easily obtained through either
acidic treatment (typically by dipping in boiling H,SO4/HNO3
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mixtures), or by exposure to a soft MW oxygen plasma or UV-
ozone lamp, are preferred since they provide a more chemic-
ally stable environment for NV~ centres, even if some more
surface terminations based on Fluor or nitrogen should be
more mentioning since they lead also to better coherence times
[57, 58, 181].

In addition to the effects intrinsic to the diamond environ-
ment and doping, the magnitude of NV? and NV~ emission
in PL also depends on the excitation wavelength of the laser
due to different absorption cross-sections [171]. Figure 7(a)
shows that the NV/NV ~ ratio is strongly affected by chan-
ging the laser from 532 nm to 473 nm for a diamond irradi-
ated with an electron dose of 1.5 x 10'° cm™2. It has indeed
been shown that excitation in the blue range is more favourable
to NV, There is near equal excitation at 514 nm and in this
case, the strengths of the zero-phonon lines is a good indic-
ator of the relative concentrations of the two NV charge states
[171]. In order to more precisely measure the charge state
ratio, decomposing the PL spectrum obtained with a 532 nm
excitation has also been proposed as a more straightforward
approach [182].

NV~ ionization into NV® may occur depending on the laser
power used and the excitation wavelength. This process leads
to blinking issues and limits the maximum accessible spin
polarization. Photon energies higher than 2.6 eV are required
for direct ionization [169]. However, ionization may proceed
through a two-photon absorption process using a green laser
[183]. The first photon induces a transition to the excited state
of the defect while the second photon excites the electron to
the conduction band of the diamond. This is accompanied by
the creation of a photocurrent, which can be usefully exploited
to electrically detect the spin-state of the NV centre in the so-
called photocurrent detection of magnetic resonance (PDMR)
scheme [51, 184]. In a similar way, electron induced ioniza-
tion of NV centres explains that only emission from the neutral
charge state of the defect is detectable in cathodoluminescence
[185]. In general the reverse process (recombination) that turns
NV~ back into NV takes place with a typical time of 500 ys
[169] and is promoted by red excitation. Multicolour illumina-
tion with a near-infrared laser increases the NV~ steady-state
population with respect to NV and strongly improves the spin
read-out fidelity [186]. In some cases, however, long term ion-
ization can occur with the recombination being inhibited due
to the presence of charge traps in the crystal that prevent an
efficient diffusion of carriers [187]. Based on a multicolour
excitation, optical patterning of the PL on the diamond’s sur-
face is then possible, allowing future storage applications [89].
PL extinction for a long period of time is, for example, illus-
trated in figure 5(b) under high power green laser [151].

5. Controlling the spatial localisation of NV centres

Beyond the production of NV-doped diamond layers with
good coherence time and stability, for most applications spa-
tial localization of NV~ defects in the diamond host material is
necessary. For example, in wide-field imaging magnetometry,
nanometre-thin layers highly doped with NV~ defects should

be located at or slightly below the surface [64, 188] in order
to precisely control the distance between the interacting spins
and the sample to be measured. Such thin layers are usually
called ‘delta-doped’ in analogy with works carried out on elec-
tronic doping of semiconductors that achieves high mobility
channels with high dopant concentration through such a spa-
tial confinement [189, 190].

The main approach to introduce localized nitrogen atoms
into diamond in order to generate NV~ defects is ex sifu
ion-beam nitrogen implantation followed by annealing, which
allows for spatial control of the nitrogen atom’s position,
ultimately limited by ion channelling and straggling effects
[125] (see section 4.1). For nitrogen atoms implanted near
the diamond surface with a few kilo-electronvolt energy, the
depth resolution is typically in the range of a few nanometres
[188, 191]. However, unwanted paramagnetic defects presum-
ably created during the implantation process reduce the spin
coherence time of implanted NV~ defects [188], even if sig-
nificant improvements can be achieved with optimized irradi-
ation and annealing procedures [192, 193]. For these reasons,
directly grown-in NV centres obtained by intentionally adding
a nitrogen precursor to the gas phase during diamond growth
by CVD [143, 194] is advantageous, in particular if spatial pos-
itioning is achieved. This approach is discussed here.

5.1 Positioning NVs in a thin layer (delta-doping)

Several growth strategies have been developed to localize NV
centres at depth during CVD growth. The simplest way is
to turn the N, input flow on and off ,which allows grow-
ing nitrogen-doped stacked layers as illustrated in figure 8(a).
However, in this case, changing the gas phase composition
is hampered by the long residence times f. of the gas spe-
cies in the plasma chamber. Indeed, for a typical incoming
gas flow of 0.5 I per minute and a volume for the plasma
chamber of a few litres [97], several minutes are required to
completely renew the gaseous environment, which complic-
ates the growth of stacked layers with sharp transitions [144].
This is all the more difficult since, as previously described,
under the high MW powers which are required to efficiently
dissociate Ny, relatively high growth rates are reached (a few
pum h~1). Consequently, there is a trade-off between high dop-
ing efficiency and high thickness control which involves very
low growth rates. Growth techniques with nanometre-scale
resolution have already shown promising results in magneto-
metry [145, 195, 196] but they require very low power densit-
ies (typically 750 W for a pressure of about 30 mbar) and the
addition of a low concentration of methane (<0.5%) to reduce
growth rates down to a few nm/h. This in turn limits achievable
NV concentrations to typically 10% to 10'> cm=3. Moreover,
at low power densities, it is difficult to obtain a high crystal-
line quality, particularly if one wants to grow the thick buffer
layer (>10 pm) [98, 197] that is required to limit the influ-
ence of the substrate on the overall luminescence. Neverthe-
less, delta-doped layers with highly confined NVs located in a
12C layer have been produced (see figures 8(b)—(d)) [145] and
have exhibited long T, coherence times of several hundreds of
microseconds when the surface is sufficiently far away and/or
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Figure 7. (a) PL emission of a type Ib HPHT diamond that has been irradiated by a 1 MeV electron beam at various doses as indicated in
the legend (Collaboration ICR, Marseille). Excitation with a 473 or 532 nm laser was carried out. (b), (c) PL showing the effect of
co-doping with boron or phosphorous on the charge state of NV centres for both H-terminated and O-terminated (100) diamond surfaces.
[174] John Wiley & Sons. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

free of defects [198]. This technique has also been coupled to
local '2C implantation in order to generate 3D profiles of NVs
within the diamond sample [199].

An alternative way to localize NV centres at depth without
changing the incoming gas flow is to modify the substrate tem-
perature during growth. Indeed it has been clearly shown that
nitrogen doping efficiency strongly depends on temperature
[161,200]. The main advantage of this approach is that a small
change of pressure and/or MW power allows decreasing or
increasing the temperature by more than one hundred degrees
in a matter of seconds, in particular for high MW power operat-
ing systems. Fast temperature variations can thus be harnessed
to create abrupt interfaces that could not be easily obtained
through gas phase tuning. It is then possible, as illustrated
in figure 9, to fabricate nitrogen-doped stacked layers with
thicknesses as low as a few hundreds of nanometres at high
MW power densities leading to high N, dissociation efficien-
cies and thus high-quality diamond films as well as thick buffer
layers.

Another approach to couple the use of high MW power
densities and the possibility of growing delta nitrogen-doped
layers is to quickly move the substrate holder in and out of
the plasma region where growth takes place, which seems
very easy from a conceptual point of view. However, the main
difficulty lies in the fact that diamond growth reactors are
based on resonant cavities and the substrate holder is part
of this cavity. Thus, most of the time the plasma discharge
is affected by a displacement of the holder [201]. In addi-
tion, to avoid too much variation of substrate temperature,
additional heating systems are sometimes required to com-
pensate for the heating loss from the plasma source [202].
In order to circumvent those issues, substrate holders can be
designed so that only a small central part that supports the
sample is translated. Reactor designs also exist in which the
cavity is relatively unaffected by movement of the holder
(such as ‘egg-style’ Aixtron reactors) [203]. This approach
thus requires some engineering development and is relatively
complicated.

5.2. Controlling NVs’ distance from the surface

As previously detailed, the positioning of NV centres in a thin
layer within the diamond crystal is particularly desirable for
many sensing applications. In addition, the distance at which
NVs are located from the surface also plays a critical role since
it will directly affect their ability to sense a magnetic field, for
example. In general, to maximize the interaction this distance
should be short (i.e. shallow NVs). However, the presence of
defects or impurities at the surface also strongly affects both
the charge state and the coherence time of NV centres due
to the induced surface electronic spin bath or magnetic noise
induced by surface spins [55]. Shallow NVs have been pro-
duced both by direct delta-doping [204] and by low energy ion
implantation [191]. Near-surface NVs can also be created by
converting incorporated nitrogen through low energy electron
irradiation [136].

Precisely measuring NVs’ distance from the surface is not
trivial and requires the development of specific procedures.
One possible way is to detect the nuclear magnetic resonance
signal from protons in adsorbed species at the surface (such
as immersion oil) [205], by coating the surface with an ele-
ment inducing strong magnetic noise [206] or by approaching
amagnetized AFM tip [207]. While deep NVs (depth > 50 nm)
in a low concentration nitrogen environment exhibit typical T
times of 300-500 s, this figure drops by one or two orders
of magnitude (i.e. 1-10 us) when the NV to surface distance
is reduced to below 5 nm [208]. An overgrowth step in order
to keep NV centres away from the surface allows improving
Hahn echo T, time, as illustrated in figure 10(a).

Removing defects at the surface is a way to extend coher-
ence times of shallow NVs. An order of magnitude extension
has been demonstrated by Sangtawesin ef al [56] through a
series of well-controlled surface treatments that aim at recov-
ering a surface state as perfect as possible. This includes pol-
ishing down to a roughness below 0.1 nm, removing sur-
face damage using Ar/Cl,/O; plasma etching, triacid cleaning
(perchloric, nitric and sulfuric acid) followed by oxygen
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Figure 8. (a) Cross section PL image of a 500 pm thick film showing five nitrogen-doped layers (in the inset). (b) Schematics showing a
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Figure 9. (a) Sketch of the cross-section of a CVD multilayer obtained by varying the growth temperature between 760 °C (orange layers)

and 840 °C (blue layers) with increasingly short times for the low-temperature step. 2 ppm of N, were constantly added to the gas phase. (b)
PL raster scan of the cross-section of the sample revealing the presence of the five low-temperature layers were NV concentration is higher.

(c) PL intensity line-cut along the white dashed line shown in (b). The inset shows data fitting with a Gaussian function of the thinnest

nitrogen doped layer, leading to a FWHM of 850 nm.

annealing at 450 °C to fully oxygen-terminate the surface.
Surface termination of the diamond indeed strongly affects
shallow NVs’ properties [209]. Improvements compared to
an as-grown or as-implanted surface have been demonstrated
through fluorine termination with an SFg plasma treatment
[210] (see figure 10(b)), nitrogen termination using a high
power plasma [211] and oxygen termination as well, depend-
ing on the initial orientation of the surface, (113) for example
as suggested by Li et al [212]. In addition a soft reactive ion
etching (RIE) oxygen plasma etching of the implanted sur-
face, with nanometre-scale precision, has allowed bringing
NVs closer to the surface (circa 4 nm) while preserving good
coherence properties (7> up to 30 us) [213].

Finally, overgrowing a diamond film implanted with a
shallow NV pattern provides a way to push the surface further
away and can be exploited to improve coherence properties

and stabilize NVs’ negative charge state while still benefit-
ing from the placement accuracy of low energy implantation
(i.e. circa 10 nm) [214]. However, this approach also comes
with additional issues. Impurities such as SiV and defects (dis-
locations for example) can be preferentially incorporated at the
growth interface [215]. Slight etching of the surface as well as
passivation of implanted N'Vs by hydrogen diffusion may also
lead to the partial disappearance of the pattern [216, 217].

5.3. Positioning NVs in-plane

It is very challenging to deterministically localize defects in
the growing plane (i.e. in the X-Y direction) using CVD.
This has been achieved on specific nanostructures either using
top-down or bottom-up techniques. In the first case, the pattern
created in a hard mask by optical or electron lithography is
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Figure 10. (a) Increase in the Hahn echo coherence time T, for single NV centres before and after an overgrowth process. The inset shows
the relative increase of the mean coherence times exceeding one order of magnitude for the 2.5 keV implanted NV centres corresponding to
the shallowest NV centres. Adapted from [214], Copyright (2015), with permission from Elsevier. (b) Evolution of 7 time versus depth
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transferred to a diamond layer containing NV centres (either
by growth or implantation) through RIE, resulting in colour
centres located in pillars, as illustrated in figure 11(a). This
process has been initially developed in order to obtain high
aspect ratio pillared and conical structures that lead to a local
field enhancement effect of the emitting surface [218-220].
It has also been successfully applied to nitrogen-doped dia-
mond films in order to create arrays of nanopillars exhibiting
NV fluorescence, as shown in figure 11(b) [221]. Such pillars
can even be usefully exploited to locally perform magnetic
sensing when attached to an AFM tip for example [222] or
to be used for sensing at the nanoscale [12]. Beyond the loc-
alized NV emission, an additional positive effect of develop-
ing such structures is the improved wave-guiding of the NV
emission, particularly in the case of growth in the [111] dir-
ection as shown by Neu et al [223]. In this configuration, the
preferential orientation of the NV axis in the direction of the
pillar (i.e. dipole perpendicular to the pillar axis) leads to an
enhanced coupling efficiency and thus extraction of light (see
figure 11(c)).

There have been only a few reports on the fabrication of
diamond nanostructures based on a bottom-up approach. The
formation of nanopillars by plasma etching, described previ-
ously, can be followed by an overgrowth step in order to form
a thin layer in which impurities (nitrogen or silicon) can be
intentionally introduced [224, 225]. Depending on the growth
conditions, the shape of those pyramidal features can be varied
according to the relative growth rates of different crystalline
planes. This additional step can thus increase the concentration
and localization of active colour centres [226—228], which can
be useful to create quantum sensors or single photon sources
based on this material [229]. In a similar way, fabrication of
p—n electronic devices has been achieved by locally growing
phosphorous doped layers on patterned diamond single crys-
tals [230].

An uncommon way to fabricate arrays of NV centres in
CVD diamond is based on a two-step approach, illustrated
in figure 12(a). First, a pattern of micro-holes is created on a
(100)-oriented high purity diamond substrate by optical litho-
graphy followed by RIE etching. The lateral orientation of
the holes is chosen along the (110) directions. In a second
step, overgrowth is performed by CVD so that the created
holes are ‘re-filled” with nitrogen-doped diamond with lim-
ited growth on the top surface. This implies choosing growth
conditions leading to a high (111) to (100) growth rate ratio,
i.e. low methane concentrations and high substrate temperat-
ures [231, 232]. The hole array totally disappears leading to a
smooth surface (figure 12(b)). NV centre distribution can be
assessed by observing the patterned region using CL. Figure
12(c) shows the CL image acquired at a wavelength of 575 nm,
which corresponds to emission from NV centres in diamond.
The pattern of holes is revealed by the presence of localized
NV centres.

6. Controlling NV orientation

NV centres’ quantization axis is oriented along the <111>;
crystallographic directions and can thus have four equivalent
directions in the crystal. In order to improve either the sens-
itivity or the ease of use of a magnetic sensor working with
an ensemble of NV centres, promoting a specific orientation
among these four directions is a great advantage. CVD growth
on substrates with alternative orientations provides a way to
achive this [93]. In general the most out-of-plane crystallo-
graphic directions of NV centres are more likely to show up
following CVD growth. When growth is performed on stand-
ard (100)-oriented substrates, all four directions having an
equivalent angle with respect to the surface, there is an equi-
probable formation of the four possible NV orientations (see
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Figure 11. (a) Sketch of the fabrication process to create NV centres localized in pillars. (b) Nanopillars obtained by ICP etching with a
chromium mask on top of a [100]-oriented CVD diamond single crystal and corresponding micro-PL mapping of an array of such pillars.
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Figure 12. (a) Sketch of the fabrication process allowing arrays of NV centres localized at the surface of CVD diamond to be obtain. (b)
Optical picture of the top CVD layer after ICP etching where square holes are visible. (c) Secondary electron image of the patterned area
after CVD growth which shows a smooth surface with no visible holes remaining. (d) CL image at 575 nm of the same region where bright

luminescence from NV centres is visible in the ‘re-filled’ holes.

figure 13(a)). Thus a maximum of 25% of the total number of
NV centres will be oriented with the desired angle. This has
motivated research on other non-classical growth orientations.

6.1. Growth on [110]-oriented substrates

The first report of preferential alignment for grown-in NV
centres was performed using CVD-grown [110]-oriented films
[147]. On this orientation, [111]and [111] directions are in
the (110) plane while [111] and [111] are out-of-plane, mak-
ing a similar angle of 35.2° (see figure 13(b)). This particu-
lar configuration thus leads to two main populations among
the four possible directions (50% preferential orientation).
Moreover, the specific configuration of the atomic structure

on the plane suggests that defects are incorporated as a unit of
a nitrogen and a vacancy rather than formed later by diffusion
of a nearby vacancy [147]. Despite this preferential alignment,
the (110)-orientation has not been the subject of many stud-
ies or applications [233-235]. In fact (110)-oriented substrates
are commercially available but with a limited size (typically
3 x 3 mm? or below). Due to cuboctahedral growth, when
[110]-oriented diamond plates are extracted from the HPHT-
grown crystal, multiple sectors are usually obtained [93],
which constitutes an important drawback since sector bound-
aries lead to stress and defect formation [98, 236]. In addi-
tion, since homoepitaxial layers on (110)-oriented diamond
substrates have one of the highest growth rates under stand-
ard CVD conditions [231], the top surface tends to rapidly
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Figure 13. Schematic drawing of the four possible NV defect orientations (in green) for a (a) [100]-oriented diamond sample,
(b) [110]-oriented diamond sample, (c) [111]-oriented diamond sample and (d) [113]-oriented diamond sample. The most out-of-plane
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disappear during growth, limiting the final surface area when
thick films are required. This point is illustrated in figures 14(a)
and (b), in which the surface area decreases by a factor of 2
after 30 h of growth even if 300 pm thick films with high-
quality can be grown at 10 ym h~1.

In order to avoid the use of (110)-oriented substrates, it has
been reported that growth on a (100) surface onto which step
bunching occurs can also lead to specific alignment of NVs
[147]. This is due to the fact that step edges mainly consist of
(110) planes [237] (figure 14(c)). Therefore preferential align-
ment of NVs on the risers of those steps is observed. Unfortu-
nately, in this case, the NVs’ uniformity is very poor since they
are mainly localized in stripes corresponding to the displace-
ment of step edges during growth [238] (figure 14(d)). For all
these reasons, (110) has been supplanted by other orientations
that are more advantageous in terms of preferential orientation
and/or easiness of growth.

6.2. Growth on [111]-oriented substrates

If we consider a [111]-oriented sample, one NV direction will
be perpendicular to the top surface (0° angle) while the three
others will make a similar angle of 60° with respect to this
direction (see figure 13(c)). Therefore, preferential alignment
of NVs along this perpendicular direction will occur during
growth [239-241]. Using an atomistic layer-by-layer growth

model, Tahara et al have shown that incorporation of nitrogen
at kinks during the displacement of [112] step edges is likely
to lead to such preferential orientation [242]. In addition, it has
been shown that, among this family, alignment of NVs along
[111]rather [111] (i.e. N-V rather than V-N) has a higher prob-
ability of occuring [241].

[111]-oriented HPHT diamond crystals can be purchased,
although their availability and size (typically 2 x 2 mm?)
are quite limited. (111) plates can be extracted by slicing
large cuboctahedral HPHT crystals (or CVD stones) with a
54.7° angle from the top (100) sector. Alternatively, under cer-
tain HPHT conditions, octahedral growth is possible leading
to pyramidal diamonds with <111>-oriented side facets [83]
from which the fabrication of triangular (111) plates with min-
imal material loss and larger growth sectors is possible. This
crystalline orientation being particularly hard mechanically, it
is extremely difficult to polish along an exact [111] direction
using a standard scaife technique [243, 244]. A slight misori-
entation angle (1° to 2°) is usually needed to obtain low rough-
ness and reasonable polishing rates. As a consequence most
as-received (111) substrates are not exactly oriented. Altern-
ative polishing techniques have been proposed that make use
of chemical agents or UV light assistance [245, 246] to obtain
a better surface finish.

The growth of CVD diamond on this specific orientation is
known to be very difficult due to twinning, defect formation



J. Phys. D: Appl. Phys. 53 (2020) 313001

Topical Review

(b)

X (um)

(d)

(c)

Figure 14. Surface morphology of a (110)-oriented CVD layer after a growth of (a) 6 h (60 pm) and (b) 30 h (300 pm). The top surface
area has eventually decreased by a factor of 2. (¢c) Scheme of macro-steps formed at the surface of a [100]-oriented diamond film during
growth, where risers and terraces are identified. [237] John Wiley & Sons. © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
(d) Preferential incorporation of NVs at the risers of the steps with (110) orientation. Adapted figure with permission from [238], Copyright

2012 by the American Physical Society.

or impurity incorporation [247-249] which usually leads to
lower carrier mobilities compared to a conventional [100]-
orientation [250]. Nevertheless, with the use of (111) sub-
strates having a controlled misorientation of 2° along the
[112] direction, atomically flat thin films compatible with
high-quality electronic devices have already been produced
[251-253]. For thicker films, the probability of defect form-
ation is higher due to the low energy difference between nor-
mal and twinned configurations as described by Butler et al
[254]. However, specific growth conditions can be chosen so
that a formed penetration twin is quickly overgrown by its par-
ent face and cannot develop further [231]. This corresponds
to an o value below 1.5, with o = \/3% and where v(1qo)
and v(111) are the growth rates of the (100) and (111) planes,
respectively. This is illustrated in figures 15(a) and (b) for
100 pm thick intrinsic diamond films for which the use of
high temperatures (>1000 °C) and low methane concentra-
tions (<1%) allows minimizing « and keeping smooth mor-
phologies. A relatively high crystalline quality as judged by
Raman/PL has been demonstrated with growth rates as high
as 6 um h™! which makes this process viable for the growth
of thicker material. More information can be found in [84].
When a small amount of nitrogen is added to the gas phase
(a few ppm), NV centres aligned along the [111] direction,
i.e. perpendicularly to the surface, are preferentially formed
[239-241] with a probability of 94%—-100% (see figures 15(c)
and (e)). This orientation further facilitates their integration
into devices by optimizing the alignment with respect to an
applied magnetic field and maximizing their emission when
embedded in nanostructures [223]. Furthermore, if growth is
performed using a '3C-depleted carbon source the coherence
time can be enhanced to the millisecond, range as illustrated
in figure 15(f) for single isolated centres (see figure 15(d) and
section 4.2). Obtaining high density NV ensembles is, how-
ever, rather difficult and may lead to a partial loss of orient-
ation. Indeed, the optimal growth condition window allow-
ing one to maintain an o parameter lower than 1.5 is strongly
reduces when nitrogen concentration is increased in the feed
gas. Nevertheless, by using specific growth conditions in a
low plasma density CVD, several tens of ppb of NV centres
have recently been obtained with good alignment and moder-
ate T, times of the order of a few microseconds [198, 255].

In particular, it has been shown that lower growth temper-
atures (circa 800 °C rather than 1000 °C) are preferable to
promote preferential alignment of those ensembles. This is
consistent with the fact that at high annealing temperatures
above 1000 °C, a partial dissociation of NVs accompanied
by vacancy migration might be the reason for re-orientation
[256]. The films’ thicknesses remained very limited, how-
ever, due to the induced stress and low growth rates involved
which currently limit the use of such CVD layers. For those
reasons the use of alternative orientations to (111) have been
considered in order to benefit from preferential orientation as
well as higher tunability of NV density in thicker layers.

6.3. Growth on [113]-oriented substrates

The choice of this alternative orientation has been guided by
the fact that in this configuration, the [111] direction is almost
in the (113) plane (80° angle with respect to the [113] direc-
tion) while the [111] direction is the most out-of-plane with an
upward angle of 29.5°. The [111] and [111] directions make a
similar downward angle of 58.5° with the [113] direction and
are thus closer to the plane (see figure 13(d)). One of the limit-
ations to the use of [113]-oriented single crystal diamond sub-
strates is that they are not currently commercially available and
need to be specifically fabricated on demand. Starting from rel-
atively thick HPHT or CVD crystals with six 100 faces, (113)
planes can be prepared by laser cutting and polishing the top
face with an angle of 25.2° (£0.5°) towards the [110] dir-
ection. For example, in [257] cylindrical diamond substrates
with a 2 mm diameter have been produced using this proced-
ure. The (113) crystallographic faces are stable under certain
CVD growth conditions [258, 259] and this orientation is suit-
able for thick layer growth. This stability is likely related to
the fact that the (113) plane undergoes a surface reconstruc-
tion in the presence of a hydrogen plasma in a similar fashion
to what has been reported for silicon, thus decreasing the sur-
face energy on this orientation [260, 261]. Under high plasma
density conditions, 460 um thick CVD diamond films with
smooth morphologies and free of non-epitaxial features have
been grown (figure 16(a)). The corresponding growth rate of
15 pm h~! was higher by a factor of 2 than that obtained on
(100) under the same conditions. A decrease of the available
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Figure 15. (a) Optical and PL images of a [111]-oriented HPHT substrate obtained from a cuboctahedral diamond (collaboration with the
Sobolev Institute of Geology and Mineralogy). (b) Laser microscope images of a 100 pum-thick CVD layer grown on this substrate under
optimized conditions. (c) ODMR signal of the 4 NV orientations with magnetic field aligned along [111]. (d) Confocal optical microscopy
image of isolated NV centres oriented along [111] in red colour. (e) 97% preferential orientation has been estimated from analysis of more
than 200 centres. (f) Spin echo signal measured for NV centres in a !> C depleted (111) diamond leading to almost 1 ms coherence time
(collaboration with the University of Basel).
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Figure 16. (a)—(c) CVD diamond layers grown on [113]-oriented HPHT substrates. (a) Unintentional N5 addition, (b) 0.5 ppm N and

(c) 10 ppm Ny, in the gas phase. First row: SEM images where the different crystalline faces can be identified; Second row: PL images
recorded using DiamondView™ equipment under UV light excitation. Green luminescence comes from the HPHT substrate and blue and
red luminescence from dislocations/stress and nitrogen related centres, respectively, in the CVD layer. (d) Cathodoluminescence spectrum
recorded at 110 K on CVD layers grown with 0 and 10 ppm of N in the gas phase. (e) Orientation-dependent ESR spectra recorded from
single NV centres while applying a static magnetic field B = 18 G perpendicular to the (113) diamond surface plane. The most-in plane
[111] direction is not detected. (f) Statistical distribution of NV defect orientations extracted from ESR measurements for a set of about 200
single NV defects. The black dashed lines indicate the expected distribution for randomly oriented NV defects.

surface area with thickness is noticeable although it remains figures 16(b) and (c), and this point constitutes a huge advant-
limited and compatible with the synthesis of millimetre-thick age in comparison to the (111) orientation which requires very
films. It is essential to note that the growth temperature range restrictive growth conditions, strongly limiting N doping and
(700 °C-1000 °C) as well as N, addition of up to a few the thickness of the grown films. PL images (second row of
tens of ppm in the gas phase can be used, as illustrated in figures 16(a)—(c)) shows only limited blue fluorescence related
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Figure 17. (a) (Left) Sketch of a sample grown at different temperatures and deposition times on a [113]-oriented diamond substrate.
(Right) Confocal PL raster scan of a cross-section of the sample obtained by laser cutting. (b) Probability distribution of the NV defect
orientation sorted by polar angle 6 in samples grown at 1000 °C and 800 °C. The black dotted bars indicate the expected distribution for a
diamond sample without preferential alignment. (c) ESR spectrum of an NV-doped layer grown on a [113]-oriented substrate while
applying a static magnetic field which separates all NV defect orientations. (d) Spin-echo signal recorded for the subset of [111]-oriented
NV defects with a static magnetic field of ~50 G applied along the [111] axis. The inset shows the spin-echo sequence consisting of
resonant MW (7/2) and (7) pulses separated by a variable free precession time 7.

to the presence of dislocations (band A) [262] and indicates a
limited stress in contrast with growth on (111). Green emission
originates from the HPHT seed. A weak orange luminescence
related to NV centres begins to appear for the highest dop-
ing level, which was confirmed by CL performed at 110 K
(figure 16(d)). TheNV defect orientation was then experiment-
ally measured by recording ESR spectra while applying a
static magnetic field along the [113] direction. Only three of
the four possible orientations were detected, with two of them
making a similar angle with the field, leading to the two dif-
ferent ESR spectra presented in figure 16(e). The probability
of occurrence of each NV defect orientation was estimated
by recording ESR spectra over a set of about 200 single NV
defects. The resulting statistical distribution is shown in figure
16(f) and a preferential orientation of 73% was clearly evid-
enced. This is again consistent with the fact that ‘in-plane’ dir-
ections are very unfavourable for NV creation [147, 238-241]
and out-of-plane ones are promoted.

As a large range of temperatures is accessible for (113)
growth, the influence of this parameter has been assessed
[263]. A stacked multilayer alternating high (1000 °C) and
low (800 °C) temperatures has been produced following the
scheme illustrated in figure 17(a), leading to a modulation
of the nitrogen doping efficiency (see also section 5.1). It
has, however, been found that preferential orientation changes
from 50% at high temperature to a maximum 80% at low tem-
perature (figures 17(b) and (c)). This approach thus allows
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combining both higher doping efficiency with preferential ori-
entation. The spin coherence time (7)) of the NV ensemble
has also been measured by applying a Hahn echo sequence.
As shown in figure 17(d), the spin echo signal exhibits charac-
teristic collapses and revivals induced by the interaction with
a bath of *C nuclear spins [264]. The decay of the envelope
leads to a coherence time 7, of 232 + 6 us, which is sim-
ilar to the one commonly obtained with conventional (100)
crystals of identical isotopic purity [265]. Therefore the (113)
orientation allows having a high degree of engineering of NV
defect orientation and density. Although, compared to (111),
NVs are inclined with respect to the surface and only partially
oriented, this orientation offers a good compromise, particu-
larly for thick CVD diamond layers.

7. Conclusions

The development of single crystal diamond synthesis by
microwave-assisted plasma CVD has witnessed considerable
progress over the past 15 years to become a mature technology.
Extensive efforts have been dedicated to the development of
high purity diamond films for power electronics through the
reduction of residual background impurities down to levels as
low as 0.1 ppb for nitrogen and boron. To this end, high qual-
ity single crystals have been reliably fabricated with thickness
of a few hundreds of m on various orientations and doping
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concentrations. Quantum technologies that make use of col-
our centres in diamond have leveraged on these achievements
to unleash the potential of this material system. While HPHT
synthesis produces bulk crystals with high crystalline perfec-
tion, their purity usually remains limited and the technique
does not allow for a precise engineering of stacked ‘quantum
grade’ layers. On the other hand, CVD has become a key
enabling technology for quantum sensing due to its unrivalled
control on impurity content and isotopic ratio. The route that is
most widely followed is thus to grow a thin active film by CVD
with optimised properties for sensing onto a HPHT diamond
substrate possessing appropriate quality and orientation.

In particular, precisely controlling NV density in the crys-
tal as well as their close environment is crucial to achiev-
ing optimal spin properties for quantum sensing applications.
Many studies have thus been dedicated to optimizing the per-
formance of CVD diamonds through a proper engineering of
the material. Reducing nearby trapping centres created dur-
ing growth by choosing alternative doping sources or growth
conditions, for example, may help stabilizing the charge state
of the N'Vs and avoid photobleaching issues. Isotopic control
of the '3C/'2C ratio associated with modification of the Fermi
level has also allowed reaching record spin coherence times
over 2 ms at room temperature. Beyond that, the coupling of
a NV spin to a nearby long-lived nuclear spin has been pro-
posed to further extend quantum storage times or create arrays
of entangled systems. It is clear that many sensing applications
(such as magnetic resonance imaging) will strongly rely on
the future development of such complex coupling schemes and
much efforts will need to be dedicated to this research area. To
this end, nanometre-scale localisation of NV centres (and other
nuclear spins) within the diamond lattice definitely remains
an important challenge. So called delta-doped diamond layers
have been produced with confinement of the colour centres in
very narrow regions at or slightly below the surface. However,
ex situ ion implantation or laser irradiation provides much
better positioning accuracy than in situ doped NVs despite
slightly worse coherent properties. These approaches will need
to be further developed.

The synthesis of thick synthetic diamonds possessing an
extremely high amount of NV centres and reasonably good
coherence properties is another short-term target that will help
push the accuracy and performance of quantum sensors fur-
ther . Producing such crystals is not trivial and requires that
adapted growth conditions are found to allow for high doping
efficiency while preserving crystalline quality. In many cases,
the NV/Nj; ratio needs to be improved through appropriate irra-
diation and annealing procedures. One specific advantage the
CVD technique can build on is the ability to grow on different
substrate orientations leading to partial or even full orientation
of NV centres along a specific crystalline direction. The com-
bination of different advantageous properties such as a high
NV yield with specific orientation and possibly localisation in
the diamond are likely to play a key role in the adoption of this
material system.

Nevertheless, efforts need to be pursued to improve
the availability of this specially designed material to a
broader community. Indeed, only few companies or academic
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laboratories currently have the know-how to engineer such
quantum-grade material. Moreover, the size of the synthetic
crystals remains limited to few square millimetres and it is
important to push forward the HPHT and CVD techniques
in order to increase the available area. This point is particu-
larly important when micro-fabrication steps are required, as
is the case for diamond tip fabrication. The last point that could
be highlighted is the importance of defining standards in the
production of quantum grade samples in terms of coherence
time, and NV concentration and orientation, which could allow
opening the way to a more reproducible industrial production.
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